
Gotcha - Sly Malware!
Scorpion: A Metagraph2vec Based Malware Detection System

Yujie Fan, Shifu Hou
Department of CSEE

West Virginia Univerisity, WV, USA
{yf0004,shhou}@mix.wvu.edu

Yiming Zhang, Yanfang Ye ∗

Department of CSEE
West Virginia Univerisity, WV, USA

yanfang.ye@mail.wvu.edu

Melih Abdulhayoglu
Comodo Security Solutions, Inc.

Clifton, NJ, USA
melih@comodo.com

ABSTRACT
Due to its severe damages and threats to the security of the Internet
and computing devices, malware detection has caught the attention
of both anti-malware industry and researchers for decades. To com-
bat the evolving malware attacks, in this paper, we first study how
to utilize both content- and relation-based features to characterize
sly malware; to model different types of entities (i.e., file, archive,
machine, API, DLL) and the rich semantic relationships among them
(i.e., file-archive, file-machine, file-file, API-DLL, file-API relations),
we then construct a structural heterogeneous information network
(HIN) and present meta-graph based approach to depict the re-
latedness over files. To measure the relatedness over files on the
constructed HIN, since malware detection is a cost-sensitive task, it
calls for efficient methods to learn latent representations for HIN. To
address this challenge, based on the built meta-graph schemes, we
propose a new HIN embedding modelmetagraph2vec on the first
attempt to learn the low-dimensional representations for the nodes
in HIN, where both the HIN structures and semantics are maximally
preserved for malware detection. A comprehensive experimental
study on the real sample collections from Comodo Cloud Security
Center is performed to compare various malware detection ap-
proaches. The promising experimental results demonstrate that our
developed system Scorpion which integrate our proposed method
outperforms other alternative malware detection techniques. The
developed system has already been incorporated into the scanning
tool of Comodo Antivirus product.

CCS CONCEPTS
• Artifficial Intelligence → General; • Database applications
→ Data mining; • Security and Protection→ Invasive Software;

KEYWORDS
Malware Detection; Heterogeneous Information Network; Network
Embedding; Metagraph2vec.

ACM Reference Format:
Yujie Fan, Shifu Hou, Yiming Zhang, Yanfang Ye ∗, and Melih Abdulhayoglu.
2018. Gotcha - Sly Malware! Scorpion: A Metagraph2vec Based Malware

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’18, August 19–23, 2018, London, United Kingdom
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5552-0/18/08. . . $15.00
https://doi.org/10.1145/3219819.3219862

Detection System. In KDD ’18: The 24th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining, August 19–23, 2018, London,
United Kingdom. ACM, New York, NY, USA, 10 pages. https://doi.org/10.
1145/3219819.3219862

1 INTRODUCTION
As the Internet and computing devices become increasingly ubiqui-
tous, their security has become more and more important. Malware
(short for malicious software) is software designed to infiltrate or
damage a computing system without the owner’s informed consent
[40], such as viruses, worms, trojans, bots, and ransomware. Mal-
ware has been used as a major weapon by cybercriminals to launch
a wide range of security attacks, like stealing confidential informa-
tion, hijacking computing devices remotely to deliver massive spam
emails, and crippling critical infrastructures, which cause serious
damages and significant financial loss to legitimate users [40]. For
example, a recent study [29] showed that half a billion personal
records were stolen or lost because of malware infections; it’s also
reported that the global damage costs of ransomware - a type of
malware that threatens to publish the victim’s data or perpetually
block access to it unless a ransom is paid - exceeded $5 billion in
2017 [10]. As a result, the detection of malware is of major concern
to both the anti-malware industry and researchers.

In order to protect legitimate users against malware attacks,
the most significant line is anti-malware software products, such
as Comodo, Kaspersky, and Symantec’s Antivirus software. Tra-
ditionally, they mainly used the signature-based method [40] for
detection. However, this method can be easily evaded by malware
attackers using techniques such as encryption, obfuscation, and
polymorphism [1]. To adjust this issue, anti-malware software prod-
ucts monitored behaviors of software from the Operating System
(OS) kernel level to block malicious behaviors. Though dynamic
detection is more resilient to low-level obfuscation, it is inherently
cost expensive and does not scale well. Unfortunately, driven by
the economic benefits, malicious programs are created and being
disseminated at a rate of thousands per day [44], making it difficult
for these client-based malware detection methods to be effective.
In order to combat the malware attacks, intelligent malware de-
tection systems have been developed at the cloud (server) side by
applying data mining and machine learning techniques in recent
years [12, 20, 36, 39, 41, 45, 46]. In many of these systems, based
on the labeled files (either malicious or benign), different classifica-
tion models were built resting on various kinds of content-based
features, such as Windows Application Programming Interfaces
(APIs), n-gram binaries, system calls that are either statically or dy-
namically extracted. The models in these systems merely utilizing
file content have isolated successes in classifying particular sets of

Applied Data Science Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

253

https://doi.org/10.1145/3219819.3219862
https://doi.org/10.1145/3219819.3219862
https://doi.org/10.1145/3219819.3219862

malware samples, but ignoring the relations among file samples is
a significant limitation of such kind of detection methods. Actually,
the relations among file samples may provide invaluable informa-
tion about their properties for malware detection. For example, if
an unknown file (i.e., file without class label) always co-exists with
many Trojans, then it’s highly possible that this file is a malicious
Trojan-downloader [44] - a type of malware that downloads and
installs multiple unwanted software (e.g., Trojan, adware) from re-
mote servers. To address the challenges of content-based malware
detection, systems leveraging file relations (e.g., file-to-machine
relations [3], file placements [32], file co-existences [30, 44]) have
been developed for malware detection. However, these systems
only took one single kind of file relations into consideration for
malware detection.

Malware attack and defense are engaged in a never-ending arms
race. The methods only utilizing either file content or file relations
for detection open the possibility for malware attackers to come
up with ways to bypass the detection. For example, as shown in
Figure 1, to detect whether the newly collected file “File-U: GWHook-
Man.dll” is malicious or not, if we only count on the file content
(e.g., Windows API calls which can well reflect the behaviors of
program code), “File-U ” is very similar to the benign file “File-B1:
AXSLE.dll” which is a dynamic link library (DLL) file associated
with Adobe Photoshop Elements 6; in this regard, it could be pre-
dicted as benign. If we merely depend on the file relations (e.g.,
file replacements which indicate files are compressed in the same
archives like in the same .zips), “File-U ” is always replaced in the
same zip files together with a benign online game program “File-B2:
Lostsaga.exe”; in this respect, it may also be predicted as benign.
Actually, “File-U ” is a malicious driver program associated with the
online game Trojan “File-M1: GameWatcher.exe”. Though from file
content, “File-U ” and “File-M1” are not directly related, the APIs
they call have intrinsic connections. For example, the API of “Set-
Timer” called by “File-M1” and the API of “SetDoubleClickTime”
called by “File-U ” are both in the “USER32.DLL” and these two APIs
are also always called together by other online game Trojans (e.g.,
“File-M2: PK32.exe”), as they are both related to the execution of
online game acceleration. To catch sly malware like “File-U ”, it calls
for novel representation to depict such complex relationships and
also the detection model based on the representation.

Figure 1: Catching sly malware from a comprehensive view.

To address the challenges above, in this paper, we leverage both
content- and relation-based features to characterize the given Win-
dows Portable Executable (PE) files, e.g., two files will be relevant
if they are always replaced in the same archives and they have
APIs that belong to the same DLL and are also called together
by a set of other files. To capture such complex relationships, we
first introduce a heterogeneous information network (HIN) [27]
for representation and then use meta-graph based approach [48]
to incorporate higher-level semantics to build up relatedness over
the files. Since malware detection is a speed sensitive application
and most network mining methods suffer the high computation
and space cost, to tackle this problem, we leverage network embed-
ding techniques and propose a new HIN embedding model named
metagraph2vec to learn the low-dimensional representations for
the nodes in HIN, where both the HIN structures and semantics
are maximumly preserved. After that, a classifier will be built for
malware detection. We develop a system called Scorpion integrat-
ing our proposed method for malware detection, which has the
following major traits:

• Novel feature representation to enable the detection of sly
malware: Instead of only using file content or file relations to
describe the given files, we utilize both of them for malware
detection. In Scorpion, the content-based features (e.g., Windows
API calls) will be first extracted from the given files, and various
kinds of relations will be further analyzed, such as (1) whether
the files are replaced in the same archives, (2) whether the files
co-exist in users’ computing devices, (3) whether the files are
created by the same parent files (e.g., the Instant Message (IM)
software installation package “QQ9.0.1.exe” will create multi-
ple files including “bugreport.exe” and “QQCloud.DLL” during
the installation), (4) whether the extracted APIs belong to the
same DLL (e.g., APIs of “WriteFile” and “CreateFileA” are both
in “KERNEL32.DLL”), and (5) whether the APIs are called to-
gether by same set of files. Based on these extracted features,
to model different kinds of entities (i.e., file, archive, machine,
API, DLL) and the rich semantic relationships among them (i.e.,
file-archive, file-machine, file-file, API-DLL, file-API relations), a
structural HIN is first introduced to represent the given files; and
a meta-graph based approach is presented to characterize the
relatedness over files. This is a natural way to handle different
types of features, i.e., file content and file relations, but to our
best knowledge is the first attempt to represent the files in such
comprehensive way that is capable to provide a more resilient
solution against malware’s evasion tatcis.

• Efficient representation learning for HIN: Based on the built
meta-graph schemes, a newHIN embeddingmodelmetagraph2vec
is proposed on the first attempt to learn the low-dimensional rep-
resentations for the nodes in HIN, which are capable to preserve
both the semantics and structural correlations between different
types of nodes. Though it’s proposed for malware detection, the
HIN embedding model metagraph2vec is a general framework
which is able to learn desirable node representations in HIN and
thus can be further applied to various network mining tasks,
such as node classification, clustering and similarity search.

• Apractical developed system for anti-malware industry ap-
plication:We develop a practical system Scorpion for intelligent

Applied Data Science Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

254

Figure 2: System architecture of Scorpion.

malware detection and provide a comprehensive experimental
study based on the real sample collection from Comodo Cloud
Security Center, which demonstrates the effectiveness and effi-
ciency of our developed system. Scorpion has already been in-
corporated into the scanning tool of Comodo Antivirus product.
It has been deployed and tested based on the real daily sample
collection (over 500,000 PE files per day) for over a year.

The remainder of this paper is organized as follows. Section 2
introduces our system architecture. Section 3 presents our proposed
method in detail. In Section 4, based on the real sample collection
from Comodo Cloud Security Center, we systematically evaluate
the performance of our developed system in comparisons with other
alternative methods in malware detection. Section 5 presents the
details of system development and operation. Section 6 discusses
the related work. Finally, Section 7 concludes.

2 SYSTEM ARCHITECTURE
The architecture of our developed malware detection system Scor-
pion is shown in Figure 2, consisting of the following components:

• Data Collector. Through the installed Comodo Antivirus prod-
uct, the users can upload the PE files to Comodo Cloud Security
Center for detection. This module collects the uploaded files as
well as the relations among files, machines, and archives.

• Feature Extractor. Based on the data collected from the previ-
ous module, it first extracts content-based features (e.g., Win-
dows API calls) from the files, and then analyzes various rela-
tionships (i.e., file-archive, file-machine, file-file, API-DLL, file-API
relations) among different types of entities (i.e., file, archive, ma-
chine, API, DLL) to depict the PE files. (See Section 3.1 for details.)

• Meta-graph Builder over HIN. In this module, based on the
features extracted from the previous component, a structural
HIN is first presented to model the relationships among different
types of entities; and then different meta-graphs are built from
the HIN to capture the relatedness over PE files from different
views (i.e., with different semantic meanings). (See Section 3.2
for details.)

• Metagraph2vec. Based on the meta-graph schemes built from
the previous module, a HIN embedding model metagraph2vec is
proposed to learn the low-dimensional representations for the
nodes in HIN, which are capable to preserve both the semantics
and structural correlations between different types of nodes.
In metagraph2vec, given a meta-graph scheme, a meta-graph
guided random walk method is first proposed to map the word-
context concept in a text corpus into a HIN, and then skip-gram
is utilized to learn effective node representation for a HIN. Later,
multi-view fusion algorithm is proposed to incorporate different
representations learned based on different meta-graph schemes.
(See Section 3.3 for details.)

• Malware Detector. After the latent representation learning for
HIN using metagraph2vec, the mapped low-dimensional vectors
of PE files will be fed to a Support Vector Machine (SVM) to train
the classification model, based on which the unlabeled files can
be predicted as either benign or malicious.

3 PROPOSED METHOD
In this section, we introduce the detailed approaches of how we
represent the PE files utilizing both content- and relation-based
features simultaneously, and how we solve the malware detection
problem based on the representation.

3.1 Feature Extraction
Content-based Features. SinceWindows API calls can effectively
reflect the behaviors of PE program codes [45] (e.g., the API of
“GetFileType” in “KERNEL32.DLL” can be used to retrieve the file
type of the specified file, while the API of “GetDlgItemText” in
“USER32.DLL” can be utilized to obtain the title or text associated
with a control in a dialog box), we extract Windows API calls from
the Import Tables [45, 46] of the collected PE files as content-based
features to represent them. If a PE file is previously compressed
by a third party binary compress tool such as UPX and ASPack
Shell or embedded a homemade packer, it will be decompressed at
first using CMDsm developed by Comodo Anti-malware Lab before
feature extraction. Note that the content-based features of API calls
are exploited as a case study here to facilitate the understanding of

Applied Data Science Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

255

our further proposed approach, while other features (e.g., n-gram
binaries, dynamic system calls) either statically or dynamically
extracted are also applicable in our further investigation.
Relation-based Features. Although content-based features like
API calls can be used to represent the behaviors of a file, to catch
sly malware like “File-U: GWHookMan.dll” as aforementioned, the
intrinsic and complex relationships between it and its associated
online game Trojan “File-M1: GameWatcher.exe” provide critical
information for the detection. To detect the increasingly sophisti-
cated malware, besides content-based features, the following kinds
of relationships are also considered in our application.
• R1: To describe the relation between a file and the archive it
replaced in, we build the file-replace-archive matrix R where
each element ri, j ∈ {0, 1} means if file i is replaced in archive j.

• R2: To represent the file-machine relationship, we generate the
file-exist-machine matrix E where each element ei, j ∈ {0, 1}
denotes whether file i exists in machine j.

• R3: A file can create another file during its execution. To repre-
sent such relationship between two files, we build thefile-create-
file matrix C where element ci, j ∈ {0, 1} denotes whether file i
creates file j.

• R4: To describe the relation of a file and its extracted API calls,
we generate the file-include-API matrix I where each element
ii, j ∈ {0, 1} denotes if file i includes API j.

• R5: To denote the relation that an API belongs to a DLL, we
generate the API-belongto-DLL matrix B where each element
bi, j ∈ {0, 1} means if API i belongs to DLL j.

3.2 Meta-graph Based Relatedness
In order to depict PE files, archives, machines, APIs, DLLs and the
rich relationships among them (i.e.,R1-R5), it is important to model
them in a proper way so that different kinds of relations can be
better and easier handled. We introduce how to use HIN, which is
capable to be composed of different types of entities and relations,
to represent the PE files by using the features described above. We
first present the concepts related to HIN as follows.

Definition 3.1. Heterogeneous informationnetwork (HIN) [27].
A HIN is defined as a graph G = (V, E) with an entity type map-
ping ϕ: V → A and a relation type mapping ψ : E → R, where
V denotes the entity set and E is the relation set, A denotes the
entity type set and R is the relation type set, and the number of
entity types |A| > 1 or the number of relation types |R | > 1. The
network schema [28] for a HIN G, denoted as TG = (A,R), is
a graph with nodes as entity types from A and edges as relation
types from R.

HIN not only provides the network structure of the data associa-
tions, but also provides a high-level abstraction of the categorical
association. For our case, we have five entity types (i.e., PE file,
archive, machine, API, DLL) and five types of relations among them
(i.e., R1-R5). Based on the definitions above, the network schema
for HIN in our application is shown in Figure 3, which enables the
representation of PE files in a comprehensive way that utilize both
content- and relation-based information simultaneously.

The different types of entities and relations motivate us to use
a machine-readable representation to enrich the semantics of re-
latedness among PE files. To handle this, the concept of meta-path

Figure 3: Network schema for HIN.

has been proposed [28]: a meta-path P is a path defined on the
graph of network schema TG = (A,R), and is denoted in the form

of A1
R1
−−→ A2

R2
−−→ ...

RL
−−→ AL+1, which defines a composite rela-

tion R = R1 · R2 · . . . · RL between types A1 and AL+1, where ·

denotes relation composition operator, and L is the length of P.
A typical meta-path to formulate the relatedness over PE files by

leveraging content-based features is F
includes
−−−−−−−−→ A

includes−1
−−−−−−−−−−→ F

which means that two PE files can be connected through the path
containing the same API over the HIN; while the meta-path of

F
exists
−−−−−−→ M

exists−1
−−−−−−−→ F denotes that two PE files can be con-

nected through the path existing in the same machine over the
HIN which is one formulation based on relation-based features.
Although meta-path can be used to depict the relatedness over PE
files in our application, it fails to capture a more complex relation-
ship, such as the relation between “File-U: GWHookMan.dll” and
its associated online game Trojan “File-M1: GameWatcher.exe” (i.e.,
they are related since they are always replaced in the same archives
and they have APIs that are in the same DLL and are also called
together by same set of other online game Trojans). This calls for a
better characterization to handle such complex relationship. Meta-
graph [48] is proposed to use a directed acyclic graph of entity and
relation types to capture more complex relationship between two
HIN entities, defined as follows:

Definition 3.2. Ameta-graph [48]M is a directed acyclic graph
with a single source nodens and a single target nodent , defined on a
HIN G = (V, E)with schema TG = (A,R). Formally, a meta-graph
is defined as M = (VM , EM ,AM ,RM ,ns ,nt), where VM ⊆ V ,
EM ⊆ E constrained by AM ⊆ A and RM ⊆ R, respectively.

In our application, based on the HIN schema displayed in Figure
3, incorporated the domain knowledge from human experts in
Comodo Anti-malware Lab, we generate twelve meaningful meta-
graphs to characterize the relatedness over PE files (i.e., MID1–
MID12 shown in Figure 4). In fact, a meta-path is a special case of
a meta-graph (e.g., MID2 and MID3 are particular cases of MID7).
But meta-graph is capable to express more complex relationship in
a convenient way. Different meta-graphs measure the relatedness
between two PE files at different views. For example,MID7 depicts
that two PE files are related if they co-exist at the same machines
and are also replaced in the same archives; while MID10 describes
that two PE files are connected if they are replaced in the same
archives and they have APIs that are in the same DLL and are also
called together by same set of other PE files (e.g., the relations
between “File-U: GWHookMan.dll” and its associated online game
Trojan “File-M1: GameWatcher.exe” can be well described using this

Applied Data Science Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

256

Figure 4:Meta-graphs built formalware detection. (The sym-
bols in the figure are abbreviations shown in Figure 3.)

meta-graph). To measure the relatedness over HIN entities (e.g., PE
files), traditional representation learning for HIN [17, 28, 37, 48]
mainly focuses on factorizing the matrix (e.g., adjacency matrix) of
a HIN to generate latent-dimension features for the nodes in this
HIN. However, the computational cost of decomposing a large-scale
matrix is usually very expensive, and also suffers from its statistical
performance drawback [15]. Since malware detection is a speed
sensitive application and requires cost-effective solutions, scalable
representation learning method for HIN is in need.

3.3 Metagraph2vec
To address the above challenge, we first formalize the problem of
HIN representation learning as follow.

Definition 3.3. HIN Representation Learning [11, 14]. Given
a HIN G = (V, E), the representation learning task is to learn a
function f : V → Rd that maps each node v ∈ V to a vector in a
d-dimensional space Rd , d ≪ |V| that are capable to preserve the
structural and semantic relations among them.

To solve the problem of HIN representation learning, due to
the heterogeneous property of HIN (i.e., network consisting of
multi-typed entities and relations), it is difficult to directly apply
the conventional homogeneous network embedding techniques
(e.g., DeepWalk [24], LINE [31], node2vec [15]) to learn the latent
representations for HIN. To address this issue, metapath2vec [11]
was proposed which employed meta-path based random walks and
heterogeneous skip-grams to learn the latent representations for
HIN such that the semantic and structural correlations between
different types of nodes could be persevered. In our application, to
catch sly malware like “File-U: GWHookMan.dll”, meta-graph based
scheme is designed to capture the relatedness over PE files which
is more expressive than meta-path based approach to depict the
complex relationships among PE files. This calls for a newmethod to
learn the latent representations for HIN. To tackle this problem, we

propose a new HIN embedding framework metagraph2vec to learn
desirable node representations in HIN: first, meta-graph guided
random walk is proposed to map the word-context concept in a
text corpus into a HIN; then skip-gram is utilized to learn effective
node representation for a HIN; later, a multi-view fusion algorithm
is proposed to incorporate different node representations learned
based on different meta-graph schemes.
Meta-graph Guided RandomWalk. Given a source nodevj in a
homogeneous network, the traditional random walk is a stochastic
process with random variables v1j ,v

2
j , ...,v

k
j such that vk+1j is a

node chosen at random from the neighbors of node vk . The transi-
tion probability p(vi+1j |vij) at step i is the normalized probability
distributed over the neighbors of vij by ignoring their node types.
However, this mechanism is unable to capture the semantic and
structural correlations among different types of nodes in a HIN.
Here, we show how we use meta-graph to guide random walkers
in a HIN to generate the paths of multiple types of nodes. In our
application, given a HIN G = (V, E) with schema TG = (A,R),
and a meta-graph scheme M in the basic form: A1

↗A2↘
↘A3↗

A4, we
put two random walkers, i.e., walker u and walker v, to traverse the
HIN. The transition probabilities at step i are defined as follows:

p1(u
i+1 |ui ,M),p2(v

i+1 |vi ,M)

=

1
|NAt (u

i)|
,

1
|NAt ′ (v

i)|

if(ui ,ui+1) ∈ E, (vi ,vi+1) ∈ E,ϕ(ui+1) , ϕ(vi+1)
1

|NAt (u
i) ∩ NAt ′ (v

i)|
,

1
|NAt (u

i) ∩ NAt ′ (v
i)|

if(ui ,ui+1) ∈ E, (vi ,vi+1) ∈ E,ui+1 = vi+1

0, 0 otherwise,
(1)

where ϕ is the node type mapping function, NAt (u
i) and NAt ′ (v

i)

denote At and At ′ type of neighborhood of node ui and vi respec-
tively. Note that if walker u and walker v are the same one, the
meta-graph guided random walk can be considered as meta-path
based random walk. The paths generated by the proposed meta-
graph guided random walks are able to preserve both the semantic
and structural relations between different types of nodes, and thus
will facilitate the transformation of HIN structures into skip-gram.
Skip-gram. After mapping the word-context concept in a text
corpus into a HIN via meta-graph guided randomwalk strategy (i.e.,
a sentence in the corpus corresponds to a sampled path and a word
corresponds to a node), skip-gram [21] is then applied on the paths
to maximize the probability of observing a node’s neighbourhood
(within a window w) conditioned on its current representation. The
objective function of skip-gram is:

argmax
Y

log
∑

−w ≤k≤w, j,k

p(vj+k |Y (vj)), (2)

whereY (vj) is the current representation vector ofvj ,p(vj+k |Y (vj))
is defined using the softmax function:

p(vj+k |Y (vj)) =
exp(Y (vj+k) · Y (vj))∑ |V |

q=1 exp(Y (vq) · Y (vj))
. (3)

Applied Data Science Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

257

Due to its efficiency, we first apply hierarchical softmax technique
[22] to solve Eq. 3; then the stochastic gradient descent (SGD) [2]
is used to train the skip-gram.
Multi-view Fusion. Given a meta-graph scheme, by using the
above proposed meta-graph guided random walk strategy and skip-
gram, the node representations will be learned for a HIN. In our
application, as described in Section 3.2, we have twelve meaningful
meta-graphs (i.e., MID1–MID12). Different meta-graphs charac-
terize the relatednesses over PE files at different views, i.e., with
different semantic meanings. For instance, MID1 depicts the relat-
edness over PE files through their content correlations (i.e., the APIs
they call); MID3 describes the relatedness over PE files through
the file-machine relations (i.e., the machines they co-exist); while
MID10 poetries the relatedness over PE files from a more compre-
hensive view which incorporates their content correlations and
different intrinsic connections (i.e., they are connected as they are
replaced in the same archives, and some APIs they call are from
same DLLs and also called by other files). As different mata-graphs
depict the relatedness over PE files in very diverse ways, to explore
the complementary nature of these different views, we propose to
use a multi-view fusion algorithm to incorporate different node
representations learned based on different meta-graph schemes.

Givenm kinds of node representations Yi (i = 1, ...,m) learned
based onm meta-graph schemes (in our casem = 12), the incorpo-
rated node representations can be denoted as: Y ′ = αi × Yi , where
αi (i = 1, ...,m) is the weight of Yi . To determine the weight of αi
for each mapped low-dimensional vector space Yi , we measure the
geometric distances among them. The distance measure based on
the principal angles between two vector spaces is significant if and
only if the vector spaces have the same dimensions [53]. In our case,
them mapped vector spaces are all with the same dimensions of d .
Therefore, we apply the geodesic distance based on principal angles
[19] to measure the geometric distances between the mapped vector
spaces. The principal angle between space Yi and Yj is defined as
the number 0 ≤ θ ≤ π

2 that satisfies:

cosθ = max
y∈Yi ,y’∈Yj

yT y’. (4)

The angle θ is 0 if and only if Yi
⋂
Yj , 0, while θ = π

2 if and only
if Yi ⊥ Yj . Let θ1,θ2, ...,θd be the d principal angles between space
Yi and Yj , the geodesic distance between them is formulated as:

d(Yi ,Yj) =
√
θ21 + θ

2
2 + ... + θ

2
d . (5)

Thus, we compute αi for each mapped vector space Yi as:

αi =

∑m
j=1,i,j d(Yi ,Yj)∑m

i=1
∑m
j=1,i,j d(Yi ,Yj)

(6)

4 EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we conduct five sets of experimental studies using
real sample collections from Comodo Cloud Security Center to
fully evaluate the performance of our developed malware detection
system Scorpion with integrate the above proposed method.

4.1 Experimental Setup
Through the installed Comodo Antivirus product, its users can scan
the PE files in their computing devices and upload those “suspicious”

Table 1: Performance indices of malware detection.

Indices Description

TP # of PE files correctly classified as malicious
TN # of PE files correctly classified as benign
FP # of PE files mistakenly classified as malicious
FN # of PE files mistakenly classified as benign
Precision TP/(TP + FP)
Recall TP/(TP + FN)

ACC (TP +TN)/(TP +TN + FP + FN)

F1 2 ∗ Precision ∗ Recall/(Precision + Recall)

files (i.e., may always include sophisticated and evolving malware)
recognized by the Comodo Antivirus in the client side to the cloud
for further detection. We obtain the dataset from Comodo Cloud
Security Center, which contains 59,749 PE files uploaded by 3,782
users (i.e. machines) on Jan 15, 2018 (i.e., 14,285 of them are detected
as malicious in the cloud side, 21,429 of them are detected as benign,
and 24,035 of them are unknown that require further prediction).
We use those ones detected in the cloud as training data (i.e., 35,714
PE files: 14,285 malware and 21,429 benign files) and the 24,035
unknown files as testing data (to obtain the ground truth, they are
further analyzed by the anti-malware experts of Comodo Security
Lab, 8,893 of which are labeled as malicious and 15,142 are benign).
After feature extraction and based on the designed network schema,
the constructed HIN has 613,581 nodes (i.e., 59,749 nodes with type
of PE file, 3,782 nodes with type of machine, 75,274 nodes with
type of archive, 468,074 with types of API, 6,702 nodes with type
of DLL) and 11,479,527 edges including relations of R1-R5. To
quantitatively validate the malware detection effectiveness, we use
the performance measures shown in Table 1.

Table 2: Detection Results of different meta-graphs.

ID Meta-paths included Precision Recall ACC F1

MID1 - 0.740 0.820 0.827 0.778
MID2 - 0.679 0.770 0.780 0.722
MID3 - 0.608 0.713 0.724 0.657
MID4 - 0.664 0.759 0.768 0.708
MID5 - 0.755 0.831 0.837 0.791
MID6 - 0.757 0.831 0.839 0.792
MID7 MID2&MID3 0.698 0.788 0.795 0.740
MID8 MID3&MID4 0.704 0.783 0.798 0.741
MID9 MID5&MID6 0.771 0.845 0.849 0.806
MID10 MID2&MID5&MID6 0.808 0.865 0.874 0.835
MID11 MID4&MID5&MID6 0.791 0.852 0.862 0.820
MID12 MID3&MID5&MID6 0.786 0.854 0.860 0.819

4.2 Evaluation of Different Meta-graphs
In this set of experiments, based on the dataset described in Section
4.1, we evaluate the performance of different kinds of relatedness
over PE files depicted by different meta-graphs (i.e.,MID1-MID12).
In the experiments, given a meta-graph scheme, we use the meta-
graph guided random walk method and skip-gram described in

Applied Data Science Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

258

Table 3: Comparisons of metagraph2vec with other network representation learning methods in malware detection.

Metric Method Training Testing10% 20% 30% 40% 50% 60% 70% 80% 90%

ACC

DeepWalk 0.742 0.800 0.841 0.858 0.854 0.867 0.887 0.898 0.901 0.907
LINE 0.778 0.858 0.894 0.917 0.930 0.933 0.942 0.946 0.944 0.948

metapath2vec 0.819 0.880 0.914 0.932 0.935 0.949 0.953 0.954 0.959 0.957
metagraph2vec 0.854 0.906 0.921 0.945 0.939 0.958 0.970 0.977 0.978 0.983

F1

DeepWalk 0.741 0.802 0.840 0.857 0.854 0.867 0.887 0.897 0.907 0.877
LINE 0.781 0.867 0.900 0.921 0.932 0.935 0.944 0.947 0.945 0.930

metapath2vec 0.817 0.881 0.913 0.932 0.934 0.948 0.954 0.953 0.958 0.942
metagraph2vec 0.853 0.907 0.920 0.945 0.939 0.957 0.970 0.976 0.977 0.977

Section 3.3 to learn the low-dimensional representations of the
nodes with type of PE file in the HIN, which are then fed to SVM
to build the classification model for malware detection. For SVM,
we use LibSVM and the penalty is empirically set to be 1,000 while
other parameters are set by default. The experimental results are
shown in Table 2, from which we can see that different meta-graphs
show different performances in malware detection, since each of
them represents a specific semantic in malware detection domain.
From Table 2, we can also observe that: (1) the relatedness over
PE files depicted by content-based correlations (MID1: APIs called
by the files) performs better than single kind of relation-based
correlations (relations of MID2: file-archive, MID3: file-machine,
MID4: file-file); (2) meta-graph based scheme is more expressive
than meta-path based approach in depicting more complex and
comprehensive relationships among PE files and thus achieve bet-
ter detection performance: i) for the description of content-based
correlations,MID9 outperforms MID1, MID5 and MID6, ii) for the
description of relation-based correlations,MID7 andMID8 outper-
formsMID2,MID3 andMID4; iii) obviously, the relationships among
PE files depicted by the meta-graphs consisting of both content-
and relation-based correlations (i.e.,MID10-MID12) provide much
higher-level semantics than others, based on which the detection
is significantly better than the others (i.e., MID1-MID9). It will be
interested to see the performance if different meta-graphs are in-
corporated together for the detection. This will be evaluated in the
next set of experiments.

4.3 Evaluation of Metagraph2vec
In this set of experiments, we evaluate our proposed method meta-
graph2vec by comparisons with several recent network representa-
tion learning methods: DeepWalk [24], LINE [31] and metapath2vec
[11]. For DeepWalk and LINE, we ignore the heterogeneous prop-
erty of HIN and directly feed the HIN for representation learning;
for metapath2vec, since MID1-MID6 are special meta-graphs which
can also be considered as meta-paths, we use them to guide the
random walks in metapath2vec. The parameter settings used for
metagraph2vec are in line with typical values used for DeepWalk,
LINE and metapath2vec: vector dimension d = 128 (LINE: 128 for
each order (1st- and 2nd-order)), walks per node r = 10, walk length
l = 80 and window sizew = 10. To facilitate the comparisons, we
use the experimental procedure as in [11, 24, 31]: we randomly
select a portion of training data described in Section 4.1 (ranging

from 10% to 90%) for training and the remaining ones for testing.
We also evaluate their performance on our testing dataset described
in Section 4.1 using all the training data to train. The SVM is used
as the classification model for all the methods. Table 3 illustrates
the detection results of different network representation learning
methods. From Table 3, we can see that the proposedmetagraph2vec
model consistently and significantly outperforms all baselines for
malware detection in terms of ACC and F1. That is to say, meta-
graph2vec learns significantly better file representations than cur-
rent state-of-the-art methods. The success of metagraph2vec lies in
the proper consideration and accommodation of the heterogeneous
property of HIN (i.e., the multiple types of nodes and relations),
and the advantage of meta-graph guided random walk for sam-
pling the node paths. Furthermore, from Table 2 and Table 3, we
can also observe that, compared with any node representations
learned based on individual meta-graph scheme (i.e., MID1-MID12),
using the multi-view fusion algorithm proposed in Section 3.3 to
incorporate different node representations learned based on differ-
ent meta-graph schemes can significantly improve the detection
performance.

4.4 Evaluation of Parameter Sensitivity,
Scalability and Stability

In this set of experiments, based on the dataset described in Sec-
tion 4.1, we first conduct the sensitivity analysis of how different
choices of parameters will affect the performance ofmetagraph2vec
in malware detection. From the results shown in Figure 5(a) and
5(b), we can observe that the balance between computational cost
(number of walks per node r and walk length l in x-axis) and ef-
ficacy (F1 in y-axis) can be achieved when r = 15 and l = 80 for
malware detection. We also examine how latent dimensions (d) and
neighborhood size (w) affect the performance. As shown in Figure
5(c), we can see that the performance tends to be stable once d
reaches around 150; similarly, from Figure 5(d) we can find that the
performance inclines to be stable when w increases to 10. Overall,
metagraph2vec is not strictly sensitive to these parameters and is
able to reach high performance under a cost-effective parameter
choice. We then further evaluate the scalability of metagraph2vec
which can be parallelized for optimization. We run the experiments
using the default parameters with different number of threads (i.e.,
1, 4, 8, 12, 16), each of which utilizes one CPU core. Figure 6.left

Applied Data Science Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

259

Figure 5: Parameter sensitivity evaluation.

shows the speed-up of metagraph2vec deploys multiple threads
over the single-threaded case, which shows that the model achieves
acceptable sub-linear speed-ups as the line is close to the optimal
line; while Figure 6.right shows that the performance remains sta-
ble when using multiple threads for model updating. Overall, the
proposed system are efficient and scalable for large-scale HIN with
large numbers of nodes. For stability evaluation, Figure 7 shows
the training (i.e., ten-fold cross validations) and testing receiver
operating characteristic (ROC) curves; it achieves an impressive
0.974 TP rate at the 0.01 FP rate when labeling the unknown files
in the testing dataset.

4.5 Comparisons with Other Traditional
Machine Learning Methods

In this set of experiments, based on the dataset described in Section
4.1, we compare Scorpion which integrates our proposed method
described in Section 3 with other traditional machine learning meth-
ods. For these methods, we construct three types of features: f-1:
content-based features (i.e., API calls); f-2: three original relation-
based features (i.e., R1-R3 introduced in Section 3.1); f-3: aug-
mented features of API calls and R1-R3. Based on these features,
we consider two typical classification models, i.e., Naive Bayes
(NB) and SVM. The experimental results are illustrated in Table
4. From the results we can observe that feature engineering (f-3:
concatenation of different features altogether) helps the perfor-
mance of machine learning, but Scorpion added the knowledge
represented as HIN significantly outperforms other baselines. This
again demonstrates that, to detect the increasingly sophisticated
malware, Scorpion using meta-graph based approach over HIN is
able to build the higher-level semantic and structural connection

Figure 6: Left: Speed-up vs # threads, Right: F1 vs # threads.

Figure 7: ROC curves: Left: Training, Right: Testing.

between PE files with a more expressive and comprehensive view
and thus achieves better detection performance.

Table 4: Comparisons of other machine learning methods.

Method NB SVM Scorpion

Settings f-1 f-2 f-3 f-1 f-2 f-3 /

ACC 0.795 0.778 0.830 0.826 0.812 0.873 0.983
F1 0.742 0.720 0.783 0.778 0.762 0.836 0.977

4.6 Comparisons with Anti-malware Products
In this section, we evaluate the detection performance of our de-
veloped system Scorpion in comparisons with some popular Anti-
malware products, based on the labeled 8,893 malware in the test-
ing dataset. To conduct the experiments, we use Kaspersky (K):
18.0.0.405, McAfee (M): 10.5.3, Symantec (S): 22.11.0.41, TrendMicro
(T): 11.0, and VirusTotal1 for comparisons. VirusTotal (VT) is a free
service that analyzes uploaded files and URLs and facilitates the
quick detection of malware, which aggregates more than 60 anti-
malware scanning engines (if there are ≥ 1/3 of the anti-malware
vendors in VT detecting the file as malicious, then it will be con-
sidered as malware for comparisons). The comparison results are
shown in Table 5, from which we can see that Scorpion outperforms
others (with TPR of 97.4%) in detecting newly unleashed malware
from different families (e.g., Locky, Ramnit, Online Game Trojans,
etc.). The success of Scorpionmay lie in its novel higher-level seman-
tic and comprehensive portrait of PE files as well as the effective
HIN representation learning using the proposed metagraph2vec.
1https://www.virustotal.com/

Applied Data Science Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

260

Table 5: Comparisons with different anti-malware scanners.

Family File# K M S T VT Scorpion

Locky 676 656 648 650 652 651 674
Pushdo 651 643 640 642 644 642 649
Ramnit 544 529 528 531 528 526 542
Zeus 418 408 392 403 396 391 413
Fireball 374 369 363 366 367 365 373
Conficker 363 358 356 359 354 357 361
PSWTroj 249 242 237 235 239 234 246
Tinba 181 174 170 173 170 171 179
...

...
...

...
...

...
...

...

Others 2332 2302 2295 2300 2297 2295 2318

Total 8893 8235 8101 8217 8163 8457 8666
DetectionRate - 0.926 0.911 0.924 0.918 0.951 0.974

5 SYSTEM DEPLOYMENT AND OPERATION
By the date, our developed system Scorpion which integrates our
proposed method, has already been incorporated into the scanning
tool of Comodo’s Antivirus product. Scorpion has been used to pre-
dict the daily sample collection fromComodo Cloud Security Center
which contains over 500,000 newly collected PE files per day. Note
that malware are constantly evolving and new malware samples
are produced on a daily basis. To account for the temporal trends
of malware production, the training data of our developed system
Scorpion are dynamically changing to include newly collected sam-
ples and information. Our system Scorpion has been deployed and
tested based on the real daily sample collection for over a year.

For the development of the system, Comodo has spent over
$300K, $150K of which is on the hardware equipment. Due to the
high detection efficiency and effectiveness, Scorpion can greatly
save human labors and reduce the staff cost: over 60 anti-malware
analysts at Comodo Cloud Security Center are utilizing the system
on a daily basis. In practice, an anti-malware analyst has to spend
at least 8 hours to manually analyze 100 PE files for malware de-
tection. Using the developed system Scorpion, the analysis of about
500,000 PE files (including feature extraction and prediction) can be
performed within hours using multiple servers. This would benefit
over 12 million Comodo’s Antivirus product users.

6 RELATEDWORK
In recent years, there have been many research efforts on develop-
ing intelligent malware detection systems using machine learning
and data mining techniques [3, 5, 6, 20, 30, 42, 43, 45, 46]. Most of
them utilize either content-based features or relation-based features
for detection. For content-based detection [7, 12, 20, 36, 38, 39, 41,
45], various kinds of content features such as API calls, n-gram
binaries, system calls either statically or dynamically extracted are
used to capture the characteristics of PE files; while relation-based
detection methods [3, 4, 6, 23, 30] leverage the relations such as
file-file relations, file-machine relations for feature representation.
Actually, combining both content- and relation-based features can
achieve better performance in malware detection. In our previous
work [44], we proposed a semi-parametric classification model to

combine both file content and file co-existences for malware detec-
tion; in our another recent work [18], HIN was first time introduced
to model the files, APIs and the relationships among them, and then
meta-paths over HIN were built to formulate the relatedness over
files for malware detection. Unfortunately, malware attack and
defense are engaged in a never-ending arms race. As meta-path
structure fails to depict the more complex relationships like rela-
tions between “File-U: GWHookMan.dll”and its associated online
game Trojan “File-M1: GameWatcher.exe”, to catch sly malware like
“File-U: GWHookMan.dll”, in this paper, we propose to use meta-
graph over HIN to capture a more comprehensive relatedness over
PE files for malware detection.

HIN has been intensively studied in recent years. Typically, HIN
is used to model different types of entities and relations [16, 25].
It has been applied to various applications, such as scientific pub-
lication network analysis [26, 28], document analysis based on
knowledge graph [33, 34], social network analysis for Twitter users
[13, 47, 49–52], and malware detection [18]. Several measures (e.g.,
meta-path [28] and meta-graph [48]) have already been proposed
for relevance computation over HIN entities. However, as mal-
ware detection requires cost-effective solutions, it calls for efficient
methods for HIN representation learning. Recently, many efficient
network embedding methods [8, 9, 35] have been proposed to ad-
dress representation learning for homogeneous network, such as
DeepWalk [24], node2vec [15], and LINE [31]. However, due to
the heterogeneous properties of HIN, it’s difficult to directly ap-
ply them for HIN representation learning. To tackle this challenge,
metapath2vec [11], HIN2vec [14] have been proposed for HIN rep-
resentation learning, which are all based on meta-path scheme. In
our application, a new efficient HIN representation learning method
based on meta-graph scheme is in demand. To address this issue,
we propose metagraph2vec to learn the latent representations for
HIN which is capable to preserve both the semantics and structural
correlations among different types of nodes in HIN.

7 CONCLUSION
To combat the evolving malware attacks, in this paper, we first
study how to utilize both content- and relation-based features to
characterize sly malware and then develop an intelligent system
Scorpion for its detection. In Scorpion, to model different types of
entities (i.e., file, archive, machine, API, DLL) and the rich semantic
relationships among them (i.e., file-archive, file-machine, file-file,
API-DLL, file-API relations), a structural HIN is first introduced to
represent the given files; and then meta-graph based approach is
presented to depict the relatedness over files. To reduce the high
computation cost of representation learning for HIN, in Scorpion, a
new HIN embedding model metagraph2vec is proposed on the first
attempt to learn the low-dimensional representations for the nodes
in HIN based on meta-graph schemes. A comprehensive experi-
mental study on the real sample collections from Comodo Cloud
Security Center is performed to compare various malware detection
approaches. The promising experimental results demonstrate that
Scorpion outperforms other alternative malware detection methods
as well as popular Antivirus products. The system has already been
incorporated into the scanning tool of Comodo Antivirus product.

Applied Data Science Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

261

ACKNOWLEDGMENTS
The authors would like to thank the anti-malware experts of Co-
modo Security Lab for the data collection as well as helpful dis-
cussions and supports. This work is also supported by the U.S.
National Science Foundation (CNS-1618629), WV HEPC Grant
(HEPC.dsr.18.5) and WVU Research and Scholarship Advancement
Grant (844).

REFERENCES
[1] Philippe Beaucamps and Éric Filiol. 2007. On the possibility of practically ob-

fuscating programs towards a unified perspective of code protection. Journal in
Computer Virology 3, 1 (2007), 3–21.

[2] Léon Bottou. 1991. Stochastic gradient learning in neural networks. Proceedings
of Neuro-Nımes 91, EC2 (1991).

[3] Duen Horng Chau, Carey Nachenberg, Jeffrey Wilhelm, AdamWright, and Chris-
tos Faloutsos. 2010. Polonium: Tera-scale graph mining for malware detection.
In KDD.

[4] Lingwei Chen, William Hardy, Yanfang Ye, and Tao Li. 2015. Analyzing file-to-file
relation network in malware detection. InWISE. Springer, 415–430.

[5] Lingwei Chen, Shifu Hou, and Yanfang Ye. 2017. SecureDroid: Enhancing Security
of Machine Learning-based Detection against Adversarial Android Malware
Attacks. In ACSAC. ACM, 362–372.

[6] Lingwei Chen, Tao Li, Melih Abdulhayoglu, and Yanfang Ye. 2015. Intelligent
malware detection based on file relation graphs. In ICSC. IEEE, 85–92.

[7] Lingwei Chen, Yanfang Ye, and Thirimachos Bourlai. 2017. Adversarial Machine
Learning in Malware Detection: Arms Race between Evasion Attack and Defense.
In EISIC. IEEE, 99–106.

[8] Peng Cui, Shaowei Liu, and Wenwu Zhu. 2017. General Knowledge Embedded
Image Representation Learning. In IEEE Transactions on Multimedia.

[9] Peng Cui, Xiao Wang, Jian Pei, and Wenwu Zhu. 2017. A Survey on Network
Embedding. In arXiv preprint arXiv:1711.08752.

[10] CybersecurityVentures. 2017. Ransomware Damage Report. https://
cybersecurityventures.com/ransomware-damage-report-2017-5-billion/.

[11] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. 2017. metapath2vec:
Scalable representation learning for heterogeneous networks. In KDD. ACM,
135–144.

[12] Yujie Fan, Yanfang Ye, and Lifei Chen. 2016. Malicious sequential pattern mining
for automatic malware detection. ESWA 52 (2016), 16–25.

[13] Yujie Fan, Yiming Zhang, Yanfang Ye, Wanhong Zheng, et al. 2017. Social Media
for Opioid Addiction Epidemiology: Automatic Detection of Opioid Addicts from
Twitter and Case Studies. In CIKM. ACM, 1259–1267.

[14] Tao-yang Fu, Wang-Chien Lee, and Zhen Lei. 2017. HIN2Vec: Explore Meta-paths
in Heterogeneous Information Networks for Representation Learning. In CIKM.
ACM, 1797–1806.

[15] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In KDD. ACM, 855–864.

[16] Jiawei Han, Yizhou Sun, Xifeng Yan, and Philip S Yu. 2010. Mining knowledge
from databases: an information network analysis approach. In SIGMOD. ACM,
1251–1252.

[17] Peter D Hoff, Adrian E Raftery, and Mark S Handcock. 2002. Latent space
approaches to social network analysis. J. Amer. Statist. Assoc. 97, 460 (2002),
1090–1098.

[18] Shifu Hou, Yanfang Ye, Yangqiu Song, and Melih Abdulhayoglu. 2017. Hin-
droid: An intelligent android malware detection system based on structured
heterogeneous information network. In KDD. ACM, 1507–1515.

[19] Ilse CF Ipsen and Carl D Meyer. 1995. The angle between complementary
subspaces. Amer. Math. Monthly (1995), 904–911.

[20] Jeremy Z Kolter and Marcus A Maloof. 2004. Learning to detect malicious
executables in the wild. In KDD. ACM, 470–478.

[21] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[22] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
NIPS. 3111–3119.

[23] Ming Ni, Tao Li, Qianmu Li, Hong Zhang, and Yanfang Ye. 2016. FindMal: A
file-to-file social network based malware detection framework. Knowledge-Based
Systems 112 (2016), 142–151.

[24] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In KDD. ACM, 701–710.

[25] Chuan Shi, Yitong Li, Jiawei Zhang, Yizhou Sun, and S Yu Philip. 2017. A survey
of heterogeneous information network analysis. IEEE Transactions on Knowledge
and Data Engineering 29, 1 (2017), 17–37.

[26] Yizhou Sun, Rick Barber, Manish Gupta, Charu C Aggarwal, and Jiawei Han. 2011.
Co-author relationship prediction in heterogeneous bibliographic networks. In
ASONAM. IEEE, 121–128.

[27] Yizhou Sun and Jiawei Han. 2012. Mining heterogeneous information networks:
principles and methodologies. DMKD 3, 2 (2012), 1–159.

[28] Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S Yu, and Tianyi Wu. 2011. Pathsim:
Meta path-based top-k similarity search in heterogeneous information networks.
VLDB Endowment 4, 11 (2011), 992–1003.

[29] Symantec. 2016. 2016 Internet Security Threat Report. https://www.symantec.
com/secu-\rity-center/threat-report.

[30] Acar Tamersoy, Kevin Roundy, and Duen Horng Chau. 2014. Guilt by association:
large scale malware detection by mining file-relation graphs. In Proceedings of
the 20th ACM SIGKDD international conference on Knowledge discovery and data
mining. ACM, 1524–1533.

[31] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. Line: Large-scale information network embedding. InWWW. International
World Wide Web Conferences Steering Committee, 1067–1077.

[32] Andrei Venzhega, Polina Zhinalieva, and Nikolay Suboch. 2013. Graph-based
malware distributors detection. InWWW. ACM, 1141–1144.

[33] Chenguang Wang, Yangqiu Song, Haoran Li, and Jiawei Zhang. 2016. Text
Classification with Heterogeneous Information Network Kernels. In AAAI. 2130–
2136.

[34] Chenguang Wang, Yangqiu Song, Haoran Li, Ming Zhang, and Jiawei Han. 2015.
Knowsim: A document similarity measure on structured heterogeneous informa-
tion networks. In ICDM. IEEE, 1015–1020.

[35] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural Deep Network Em-
bedding. In ACM SIGKDD.

[36] Tobias Wüchner, Martín Ochoa, and Alexander Pretschner. 2014. Malware detec-
tion with quantitative data flow graphs. In ASIACCS. ACM, 271–282.

[37] Shuicheng Yan, Dong Xu, Benyu Zhang, Hong-Jiang Zhang, Qiang Yang, and
Stephen Lin. 2007. Graph embedding and extensions: A general framework for
dimensionality reduction. TPAMI 29, 1 (2007), 40–51.

[38] Yanfang Ye, Lingwei Chen, Shifu Hou, William Hardy, and Xin Li. 2018. DeepAM:
a heterogeneous deep learning framework for intelligent malware detection.
Knowledge and Information Systems 54, 2 (2018), 265–285.

[39] Yanfang Ye, Lifei Chen, Dingding Wang, Tao Li, Qingshan Jiang, and Min Zhao.
2009. SBMDS: an interpretable string based malware detection system using
SVM ensemble with bagging. Journal in computer virology 5, 4 (2009), 283.

[40] Yanfang Ye, Tao Li, Donald Adjeroh, and S Sitharama Iyengar. 2017. A survey on
malware detection using data mining techniques. CSUR 50, 3 (2017), 41.

[41] Yanfang Ye, Tao Li, Yong Chen, and Qingshan Jiang. 2010. Automatic malware
categorization using cluster ensemble. In KDD. ACM, 95–104.

[42] Yanfang Ye, Tao Li, Qingshan Jiang, Zhixue Han, and Li Wan. 2009. Intelligent
file scoring system for malware detection from the gray list. In KDD. ACM,
1385–1394.

[43] Yanfang Ye, Tao Li, Qingshan Jiang, and Youyu Wang. 2010. CIMDS: adapting
postprocessing techniques of associative classification for malware detection.
IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews) 40, 3 (2010), 298–307.

[44] Yanfang Ye, Tao Li, Shenghuo Zhu, Weiwei Zhuang, Egemen Tas, Umesh Gupta,
and Melih Abdulhayoglu. 2011. Combining file content and file relations for
cloud based malware detection. In KDD. ACM, 222–230.

[45] Yanfang Ye, Dingding Wang, Tao Li, and Dongyi Ye. 2007. IMDS: Intelligent
malware detection system. In KDD. ACM, 1043–1047.

[46] Yanfang Ye, Dingding Wang, Tao Li, Dongyi Ye, and Qingshan Jiang. 2008. An
intelligent PE-malware detection system based on association mining. Journal in
computer virology 4, 4 (2008), 323–334.

[47] Xuchao Zhang, Liang Zhao, Arnold P Boedihardjo, and Chang-Tien Lu. 2017.
Online and Distributed Robust Regressions under Adversarial Data Corruption.
In ICDM. IEEE, 625–634.

[48] Huan Zhao, Quanming Yao, Jianda Li, Yangqiu Song, and Dik Lun Lee. 2017. Meta-
graph based recommendation fusion over heterogeneous information networks.
In KDD. ACM, 635–644.

[49] Liang Zhao, Feng Chen, Chang-Tien Lu, and Naren Ramakrishnan. 2016. Multi-
resolution spatial event forecasting in social media. In ICDM. IEEE, 689–698.

[50] Liang Zhao, Jiangzhuo Chen, Feng Chen, Wei Wang, Chang-Tien Lu, and Naren
Ramakrishnan. 2015. Simnest: Social media nested epidemic simulation via online
semi-supervised deep learning. In ICDM. IEEE, 639–648.

[51] Liang Zhao, Ting Hua, Chang-Tien Lu, and Ray Chen. 2016. A topic-focused
trust model for Twitter. Computer Communications 76 (2016), 1–11.

[52] Liang Zhao, Junxiang Wang, and Xiaojie Guo. 2018. Distant-supervision of
heterogeneous multitask learning for social event forecasting with multilingual
indicators. In AAAI. 4498–4505.

[53] Guido Zuccon, Leif A Azzopardi, and CJ Van Rijsbergen. 2009. Semantic spaces:
Measuring the distance between different subspaces. In International Symposium
on Quantum Interaction. Springer, 225–236.

Applied Data Science Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

262

https://cybersecurityventures.com/ransomware-damage-report-2017-5-billion/
https://cybersecurityventures.com/ransomware-damage-report-2017-5-billion/
https://www.symantec.com/secu-\rity-center/threat-report
https://www.symantec.com/secu-\rity-center/threat-report

	Abstract
	1 Introduction
	2 System Architecture
	3 Proposed Method
	3.1 Feature Extraction
	3.2 Meta-graph Based Relatedness
	3.3 Metagraph2vec

	4 Experimental Results And Analysis
	4.1 Experimental Setup
	4.2 Evaluation of Different Meta-graphs
	4.3 Evaluation of Metagraph2vec
	4.4 Evaluation of Parameter Sensitivity, Scalability and Stability
	4.5 Comparisons with Other Traditional Machine Learning Methods
	4.6 Comparisons with Anti-malware Products

	5 System Deployment and Operation
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

